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Abstract
A lattice model of a directed self-avoiding walk is used to investigate adsorption properties of a
semiflexible alternating copolymer chain on an impenetrable flat and fluctuating surface in two
(square, hexagonal and rectangular lattice) and three dimensions (cubic lattice). In the cubic
lattice case the surface is two-dimensional impenetrable flat and in two dimensions the surface
is a fluctuating impenetrable line (hexagonal lattice) and also flat impenetrable line (square and
rectangular lattice). Walks of the copolymer chains are directed perpendicular to the plane of
the surface and at a suitable value of monomer surface attraction, the copolymer chain gets
adsorbed on the surface. To calculate the exact value of the monomer surface attraction, the
directed walk model has been solved analytically using the generating function method to
discuss results when one type of monomer of the copolymer chain has attractive, repulsive or no
interaction with the surface. Results obtained in the flat surface case show that, for a stiffer
copolymer chain, adsorption transition occurs at a smaller value of monomer surface attraction
than a flexible copolymer chain while in the case of a fluctuating surface, the adsorption
transition point is independent of bending energy of the copolymer chain. These features are
similar to that of a semiflexible homopolymer chain adsorption.

1. Introduction

The copolymer adsorption is a subject of theoretical
and experimental investigations due to its applications in
biophysics, biosensors, pattern recognition, adhesion and
surface protection. For example, in the case of biophysics,
since a protein molecule is made of a heterogeneous sequence
of hydrophobic and hydrophilic residues, therefore it can be
treated as a random copolymer and its stiffness may be in
between flexible and stiff chains. So, protein is a semiflexible
random copolymer molecule. The conformational properties
of such polymer molecules have attracted considerable
attention in recent years due to advancement in the
experimental methods in which it has become possible to
pull and stretch single biomolecules to measure its elastic
properties [1, 2]. These studies reveal a wealth of information
about the conformational behaviour of biopolymers and
therefore of biological importance. In addition to it, the study
of adsorption of the copolymer chain on a surface is also useful

in determining the relation between their compositions with
their adsorption characteristics.

The problem of random copolymer adsorption has been
extensively studied using numerical methods, see [3–8], and
references quoted therein. However, analytical methods for
adsorption of a copolymer chain with self-avoidance effect
are limited to directed-walk-like models. In the past few
years alternating copolymer adsorption has also received
attention [9] due to the location of its adsorption transition
point and calculation of crossover exponent. Adsorption of
the copolymer chain merits somewhat differently from the
homopolymer chain in a sense that different types of monomers
of the copolymer chain need not have attractive interaction with
the surface.

A lattice model of self-avoiding walks and directed
self-avoiding walks has been used extensively to derive the
essential physics associated with the behaviour of a surface
interacting polymer chain in a good solvent in two and three
dimensions [9–12]. If the surface is attractive, it contributes
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an energy εs (<0) for each step of walk lying on the surface.
This leads to an increased probability defined by a Boltzmann
weight ω = exp(−εs/kBT ) of moving a step on the surface
(εs < 0 or ω > 1, T is temperature and kB is the Boltzmann
constant). The polymer chain gets adsorbed on the surface at
a suitable value of εs. The transition between adsorbed and
desorbed regimes is marked by a critical value of adsorption
energy or ωc. One may define the crossover exponent φ at the
adsorption transition point as Ns ∼ Nφ , where N is the total
number of monomers in the polymer chain and Ns the number
of monomers adsorbed on the surface.

In this paper, we have extended the directed self-
avoiding walk model, introduced by Privman et al [12]
for homopolymer chains, to study the adsorption–desorption
phase transition behaviour of the semiflexible alternating
copolymer chain immersed in a good solvent on a flat
(one-dimensional and two-dimensional) and fluctuating (one-
dimensional) impenetrable surface. To calculate adsorption
properties of the copolymer chain on a fluctuating impenetrable
surface, we have considered a two-dimensional hexagonal
lattice while square and rectangular lattices have also been
considered for the sake of completion. In the case of the square
and rectangular lattices, the surface is one-dimensional and
flat. However, in three-dimensional space we have considered
a cubic lattice with a flat two-dimensional impenetrable surface
to compare the results obtained in two and three dimensions.
Such a study is useful in examining the question whether
the copolymers differ from homopolymers with respect to
their critical behaviour near an impenetrable surface. We
have considered a semiflexible alternating copolymer chain
composed of two type of monomers (A and B) arranged
along the chain length in a sequence A–B–A–B–A–B · · ·
and model the copolymer chain as a directed self-avoiding
walk on the lattice. Such a copolymer model serves as a
paradigmatic model of actually disordered macromolecules
(for example, proteins). For adsorption of a semiflexible
alternating copolymer chain on an impenetrable flat and
fluctuating surface perpendicular to the preferred direction of
the walks of the copolymer chain, the directed walk model
has been solved analytically and the exact critical value of the
surface attraction for the adsorption of the copolymer chain has
been evaluated.

This paper is organized as follows. in section 2 the lattice
model of a directed self-avoiding walk has been described for
the semiflexible alternating copolymer chain in two dimensions
on a hexagonal, square and rectangular lattice while in three
dimensions for cubic lattice. Partially directed and fully
directed self-avoiding walk models of the copolymer chain
have been solved analytically for the adsorption of the chain
on an impenetrable fluctuating and impenetrable flat surface
perpendicular to the preferred direction of the walks of the
copolymer chain. Finally, in section 3 we discuss the results
obtained.

2. Model and method

A lattice model of directed self-avoiding walk [12] has been
used to study adsorption–desorption phase transition behaviour

Figure 1. All the possible directions of movement of the walker on a
two-dimensional hexagonal lattice have been named by 1, 2, 3, 4, 5
and 6.

of a alternating copolymer chain under good solvent conditions
on a flat and a fluctuating impenetrable surface. The directed
walk models are restrictive in the sense that the angle of
bending has a unique value that is 90◦ or no bend (for square,
rectangular and cubic lattices) while in the case of a hexagonal
lattice the value of the bending angle is 60◦ for each bend. In
addition to it, directedness of the walk amounts to some degree
of stiffness in the copolymer chain because all directions of
the space are not treated equally. However, the directed self-
avoiding walk model can be solved analytically and therefore
gives an exact value of the adsorption transition point of the
chain.

We consider the following two cases of directedness of
the copolymer chain for square, rectangular and cubic lattices:
in case (i) the partially directed self-avoiding walk (PDSAW)
model, a walker is allowed to walk along ±y and +x directions
for the square and rectangular lattice case while in the cubic
lattice case a walker walks along ±y, +x and +z directions. In
case (ii) the fully directed self-avoiding walk (FDSAW) model,
the walker is allowed to take steps along the +x , +y directions
in the square and rectangular lattice case while along +x , +y
and +z directions for the case of a cubic lattice. For a two-
dimensional hexagonal lattice, we have considered three cases
of directedness of the copolymer chain, and these cases can
be defined with the help of the direction of movement of the
walker on the unit cell of the lattice as follows: there are six
possible directions of movement of the walker and steps along
these directions can be named by 1, 2, 3, 4, 5 and 6 (as shown
in figure 1). If the walker is allowed to take steps along all
the possible directions excluding only directions along step 4,
such a directed walk model for a hexagonal lattice is named
a PDSAW(I) model. In another case in which steps like 4
and 5 are not allowed for a walker on the hexagonal lattice, it
corresponds to a PDSAW(II) model while the FDSAW model
corresponds to the case in which a walker is allowed to walk
along steps 1, 2 and 3 on the hexagonal lattice. The stiffness
in the alternating copolymer chain has been introduced by
associating an energy barrier for each bend in the walk of the
copolymer chain. The stiffness weight k = exp(−βεb), where
β = (kBT )−1 is the inverse of the temperature and εb(>0)

is the energy associated with each bend of the walk of the
copolymer chain. For k = 1 or εb = 0 the copolymer chain
is said to be flexible and for 0 < k < 1 or 0 < εb < ∞
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the copolymer chain is said to be semiflexible. However, when
εb → ∞ or k → 0, the copolymer chain has a rigid rod-like
shape.

The partition function of a semiflexible alternating
copolymer chain made of two types of monomers (A and B)
can be written as

G(k, g1, g2) =
∑N=∞

N=0

∑

all walks of N steps

g1
N/2g2

N/2k Nb (1)

where Nb is the total number of bends in a walk of N steps
(monomers), and g1 and g2 is the step fugacity of each of
the A and B type monomers, respectively. For the sake of
mathematical simplicity we assume here onwards g1 = g2 =
g. The method of analysis discussed in this paper can be easily
extended to the case g1 �= g2.

It is possible to consider two distinct surfaces, one parallel
and the other perpendicular to the directedness of the walks
of the copolymer chain. In the case of homopolymer chain
adsorption on an attractive impenetrable surface, it has been
found that the features associated with the adsorption were the
same in both surface orientations; only the critical value of
surface attraction differs for the two surface orientations. This
fact is also true for isotropic and directed walk models of the
homopolymer chain adsorption [13].

2.1. Directed self-avoiding walk model on a cubic lattice

We consider an impenetrable surface i.e. a x–y plane located
at z = 0, the first monomer of the copolymer chain is grafted
to the surface and the walker can walk along +x , ±y and +z
directions on the cubic lattice for the PDSAW model (as shown
schematically in figure 2). Since an alternating copolymer
chain is made of two type monomers (A and B) therefore if the
first monomer of the copolymer chain grafted to the surface
is of A type, the component of the partition function of the
copolymer chain with the first step along the +x direction is
written as S1x (sum of the Boltzmann weight of all the walks
with the first step on the surface and along the +x direction)
and similarly, if the first step is along any one out of the ±y
directions, we have S1y . However, if the B type monomer is the
first monomer of the copolymer chain and it is grafted on the
surface, then, if the first monomer of the polymer chain is along
the +x direction, the component of the partition function is
written as S2x but S2y is the component of the partition function
with the first monomer of B type and the first step of the walk of
the copolymer chain is along any one out of the ±y directions.
The component of the partition function perpendicular to the
plane of the surface is written as Z .

(i) Partially directed self-avoiding walk model. The partition
function of the surface interacting copolymer chain can be
calculated using the method of analysis discussed by Mishra
et al [13] and components of the partition function are
graphically shown in figure 3. The components of the
partition function GPD−C(k, ω1, ω2, g) of the copolymer chain
interacting with the surface having a first monomer of A type
can, therefore, be written as follows:

SPD−C
1x (k, ω1, ω2, g) = s1 + s1(s2 + 2kSPD−C

2y + k Z PD−C)

+ s1s2(s1 + 2kSPD−C
1y + k Z PD−C) + · · · (2)

Figure 2. In this figure we have schematically shown a walk of an
alternating copolymer chain interacting with an impenetrable surface
located at z = 0 and one end of the chain is grafted at O. The walk of
the chain is partially directed in three dimensions, i.e. walker is
allowed to walk along +x , ±y and +z directions.

where s1(=ω1g) is the Boltzmann weight of the interaction
energy of the A type monomer with the surface and similarly
s2(=ω2g) is that of the B type monomer. For s1s2 < 1, we
have

SPD−C
1x (k, ω1, ω2, g) = s1 + s1(s2 + 2kSPD−C

2y + k Z PD−C)

1 − s1s2

+ s1s2(s1 + 2kSPD−C
1y + k Z PD−C)

1 − s1s2
(3)

the component along the y axis:

SPD−C
1y (k, ω1, ω2, g) = s1 + s1(s2 + kSPD−C

2x + k Z PD−C)

+ s1s2(s1 + kSPD−C
1x + k Z PD−C) + · · · (4)

for s1s2 < 1:

SPD−C
1y (k, ω1, ω2, g) = s1 + s1(s2 + 2kSPD−C

2x + k Z PD−C)

1 − s1s2

+ s1s2(s1 + 2kSPD−C
1x + k Z PD−C)

1 − s1s2
(5)

and components of the partition function with the first
monomer of B type are

SPD−C
2x (k, ω1, ω2, g) = s2 + s2(s1 + 2kSPD−C

1y + k Z PD−C)

+ s2s1(s2 + 2kSPD−C
2x + k Z PD−C) + · · · (6)

which can be rewritten for s1s2 < 1:

SPD−C
2x (k, ω1, ω2, g) = s2 + s2(s1 + 2kSPD−C

1y + k Z PD−C)

1 − s1s2

+ s1s2(s2 + 2kSPD−C
2y + k Z PD−C)

1 − s1s2
(7)

also

SPD−C
2y (k, ω1, ω2, g) = s2 + s2(s1 + kSPD−C

1x + k Z PD−C)

+ s2s1(s2 + kSPD−C
2x + k Z PD−C) + · · · (8)

3
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Figure 3. The generating functions for a partially directed self-avoiding walk on a three-dimensional cubic lattice is shown diagrammatically.
X , Y and Z represent the sum of the Boltzmann weight of all the walks of a copolymer chain having the first step along +x , ±y, +z
directions respectively while S1x , S1y show the sum of the Boltzmann weight of all the walks with the first monomer of the chain of A type
and this step on the surface is along +x , +y directions respectively and S2x , S2y is the sum of the weights of all the walks when the first
monomer of the chain is B type and this step is on the surface along +x , +y directions respectively.

when s1s2 < 1:

SPD−C
2y (k, ω1, ω2, g) = s2 + s2(s1 + kSPD−C

1x + k Z PD−C)

1 − s1s2

+ s2s1(s2 + kSPD−C
2x + k Z PD−C)

1 − s1s2
. (9)

Using figure 3, we write the component of the partition
function perpendicular to the plane of the surface as [13]

Z PD−C(k, g) = g + g(k XPD−C + 2kY PD−C + Z PD−C) (10)

where XPD−C(k, g) = SPD−C
1x (k, ω1 = ω2 = 1, g) =

SPD−C
2x (k, ω1 = ω2 = 1, g) and Y PD−C(k, g) =

SPD−C
1y (k, ω1 = ω2 = 1, g) = SPD−C

2y (k, ω1 = ω2 = 1, g).
In other words, we have an expression for XPD−C(k, g) and
Y PD−C(k, g):

XPD−C(k, g) = g + g

1 − g
(g + 2kY PD−C + k Z PD−C) (11)

Y PD−C(k, g) = g + g

1 − g
(g + k XPD−C + k Z PD−C). (12)

On solving equations (10)–(12) we obtain the component of
the partition function perpendicular to the plane of the surface
as [13]

Z PD−C(k, g) = − g + (2k − 1)g2

(−1 − k + 4k2)g2 + (k + 2)g − 1
. (13)

On solving equations (3), (5), (7) and (9) and using the value
of Z PD−C from equation (13), we get the value of SPD−C

1x and
SPD−C

1y [14]:

SPD−C
1x (k, ω1, ω2, g) =

− s1(−1 + u1s2 + u2s1s2
2 )(−1 + 2g + (−1 + 2k2)g2)

(1 − 2s1s2(1 + 2k2) + s2
1 s2

2 (1 − 2k2)2)u3

(s1s2 < 1) (14)

where u1, u2 and u3 are

u1 = −1 + s1 + 2k2s1 − 2k(1 + 2s1)

u2 = 1 − 2k − 2k2 + 4k3

u3 = (−1 − k + 4k2)g2 + (k + 2)g − 1

and

SPD−C
1y (k, ω1, ω2, g) =

− (−s1 + s1s2u4 + u5s1s2
2 )(−1 + 2g + (−1 + 2k2)g2)

(1 − 2s1s2(1 + 2k2) + s2
1 s2

2 (1 − 2k2)2)u3

(s1s2 < 1) (15)

where
u4 = −1 + s1 + 2k2s1 − k(1 + 2s1)

u5 = 1 − k − 2k2 + 2k3.

Thus, the partition function of the copolymer chain having
the first monomer of A type and grafted to the surface can be
written as [14]

GPD−C(k, ω1, ω2, g) = SPD−C
1x + 2SPD−C

1y + Z PD−C

(s1s2 < 1) (16)

where

GPD−C(k, ω1, ω2, g) =
(u6 + u7 + s2

1 s2(−24k5s2g2 + (−1 + g)u8 + u9))

(1 − 2s1s2(1 + 2k2) + s2
1 s2

2 (1 − 2k2)2)u3
(17)

here

u6 = g(−1 + g − 2kg) + s1(−3 + 6g + (−3 + 6k2)g2)

4
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Figure 4. This figure compares the values of ωc1 for different values of βεb for adsorption of a semiflexible alternating copolymer chain on a
surface perpendicular to one of the preferred directions of the copolymer chain for PDSAW and FDSAW models on a cubic lattice for values
of ωc2 = 0.9, 1 and 1.5.

u7 = s1s2(−3+8g−5g2+16k3g2+2k2g(2+g)+k(−4+8g))

u8 = −3 − 3s2 + 3g + 4s2g

u9 = 8k3u10 + 4k4gu11 − 2ku12 − 2k2u13

u10 = s2 − 2s2g + 2g2 + 3s2g2

u11 = −3g + s2(−1 + 4g)

u12 = 4(−1 + k)2 + s2(2 − 4g + 3g2)

and

u13 = −3 + 6g + s2(3 − 8g + 8g2).

Singularities appearing in equation (17) give the
critical value of gc = k+2−√

17k
2(1+k−4k2 )

[13] and ωc1 =
4(1+k−4k2)2

(1+√
2k)2(k+2−√

17k)2ωc2
[14]. On substitution of ωc1 = ωc2 =

ωc, we are able to obtain ωc required for adsorption of a
semiflexible homopolymer chain for 3D-PDSAW, as reported
by Mishra et al [13].

We consider the value of ωc2 equal to one, greater than one
(say, 1.5) and less than one (say, 0.9), depending on the fact
that the B type monomer is having no interaction, attractive or
repulsive interaction with the surface and obtain ωc1 required
for adsorption of the copolymer chain on the surface. Variation
of ωc1 is shown for different values of βεb for three values of
ωc2 in figure 4.

(ii) Fully directed self-avoiding walk model. The partition
function GFD−C(k, ω1, ω2, g) for this case can be easily
evaluated following the method used for the 3D-PDSAW
model, discussed above. We write components of the partition
function GFD−C(k, ω1, ω2, g) of a semiflexible alternating
copolymer chain having the first monomer of A type as

SFD−C
1x (k, ω1, ω2, g) = s1 + s1(s2 + kSFD−C

2y + k Z FD−C)

+ s1s2(s1 + kSFD−C
1y + k Z FD−C) + · · · (18)

for s1s2 < 1:

SFD−C
1x (k, ω1, ω2, g) = s1 + s1(s2 + kSFD−C

2y + k Z FD−C)

1 − s1s2

+ s1s2(s1 + kSFD−C
1y + k Z FD−C)

1 − s1s2
(19)

other component:

SFD−C
1y (k, ω1, ω2, g) = s1 + s1(s2 + kSFD−C

2x + k Z FD−C)

+ s1s2(s1 + kSFD−C
1x + k Z FD−C) + · · · (20)

when s1s2 < 1:

SFD−C
1y (k, ω1, ω2, g) = s1 + s1(s2 + kSFD−C

2x + k Z FD−C)

1 − s1s2

+ s1s2(s1 + kSFD−C
1x + k Z FD−C)

1 − s1s2
(21)

and components of the partition function with a monomer
grafted on the surface of B type are

SFD−C
2x (k, ω1, ω2, g) = s2 + s2(s1 + kSFD−C

1y + k Z FD−C)

+ s2s1(s2 + kSFD−C
2y + k Z FD−C) + · · · (22)

when s1s2 < 1:

SFD−C
2x (k, ω1, ω2, g) = s2 + s2(s1 + kSFD−C

1y + k Z FD−C)

1 − s1s2

+ s2s1(s2 + kSFD−C
2y + k Z FD−C)

1 − s1s2
(23)

also

SFD−C
2y (k, ω1, ω2, g) = s2 + s2(s1 + kSFD−C

1x + k Z FD−C)

+ s2s1(s2 + kSFD−C
2x + k Z FD−C) + · · · (24)

here too, s1s2 < 1, so that

SFD−C
2y (k, ω1, ω2, g) = s2 + s2(s1 + kSFD−C

1x + k Z FD−C)

1 − s1s2

+ s2s1(s2 + kSFD−C
2x + k Z FD−C)

1 − s1s2
. (25)

The component of the partition function perpendicular to the
plane of the surface for this case can be written using the
method discussed for the PDSAW model as [13]

Z FD−C(k, g) = g + g(k XFD−C + 2kY FD−C + Z FD−C) (26)

5
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where XFD−C(k, g) = SFD−C
1x (k, ω1 = ω2 = 1, g) =

SFD−C
2x (k, ω1 = ω2 = 1, g) and Y FD−C(k, g) =

SFD−C
1y (k, ω1 = ω2 = 1, g) = SFD−C

2y (k, ω1 = ω2 = 1, g).
In this case, we have an expression for XFD−C(k, g) and
Y FD−C(k, g) that can be written as

XFD−C(k, g) = g + g

1 − g
(g + kY FD−C + k Z FD−C) (27)

Y FD−C(k, g) = g + g

1 − g
(g + k XFD−C + k Z FD−C). (28)

On solving equations (26)–(28) we obtain the component of
the partition function perpendicular to the plane of the surface
as [13]

Z FD−C(k, g) = − g

−1 + g(1 + 2k)
. (29)

On solving equations (19), (21), (23) and (25) and
substituting the value of Z FD−C from equation (29) we get the
following values of SFD−C

1x and SFD−C
1y [14], (s1s2 < 1):

SFD−C
1x (k, ω1, ω2, g) = SFD−C

1y (k, ω1, ω2, g)

= − s1(1 + s2 + ks2)(−1 + g + kg)

(−1 + (1 + k)2s1s2)(−1 + g + 2kg)
(30)

GFD−C(k, ω1, ω2, g) = SFD−C
1x + SFD−C

1y + Z FD−C (31)

so that

GFD−C(k, ω1, ω2, g) = g − s1u14

(−1 + (1 + k)2s1s2)(−1 + g + 2kg)

(s1s2 < 1) (32)

where

u14 = 2(−1 + g + kg) + (1 + k)s2(−2 + 3(1 + k)g).

Singularities of the partition function, in this case give the
critical value of gc = 1

2k+1 [13] and ωc1 = (2k+1)2

ωc2(k+1)2 [14].
Assuming ωc2 equal to one, greater than one (say, 1.5, an
attractive interaction of B type monomers with the surface)
and less than one (say, 0.9, a repulsive interaction of B type
monomers with the surface), we obtained ωc1 � 1 so that the
adsorption of a copolymer chain may take place on the surface.
Variation of ωc1 with bending energy of the copolymer chain
is shown in figure 4 for the FDSAW model on a cubic lattice.
In this case too, on substitution of ωc1 = ωc2 = ωc, we are
able to reproduce the value of ωc required for adsorption of the
semiflexible homopolymer chain, as reported by Mishra et al
[13] for the FDSAW model on the cubic lattice.

2.2. Adsorption on a fluctuating surface: directed
self-avoiding walk model on a two-dimensional hexagonal
lattice

Adsorption of the copolymer chain has been studied on a
two-dimensional hexagonal lattice to investigate adsorption–
desorption phase transition behaviour of a semiflexible
alternating copolymer chain on a fluctuating surface. In the
case of a two-dimensional hexagonal lattice, the surface is an
impenetrable line and its shape is like a sawtooth wave [15] (as
shown in figure 5 schematically). Therefore, adsorbed parts of

the copolymer chain have bends and in this case components
of the partition function of the copolymer chain having the
first monomer grafted to the surface of A type can be written
following the method outlined above and using figure 5(B) as

SH(k, ω1, ω2, g) = s1(1 + ks2 + k2s2Y H)

+ s2
1 s2k2(1 + ks2 + k2s2Y H) + · · · (33)

where Y H(k, g) is the component of the partition function
perpendicular to the plane of the surface:

SH(k, ω1, ω2, g) = s1(1 + ks2 + k2s2Y H)

1 − s1s2k2
(s1s2 < 1).

(34)
The components of the partition function of a surface

interacting copolymer chain can be written for the above-
mentioned three cases of directedness of the walks of the
alternating copolymer chain for a two-dimensional hexagonal
lattice as follows.

(i) Partially directed self-avoiding walk (I) model. For this
model the component of the partition function perpendicular
to the plane of the surface can be calculated following the
method discussed above. We write the expression of XPD1−H

by substituting ω1 = ω2 = 1 in equation (34), such that

XPD1−H(k, g) = g(1 + kg + k2gY H)

1 − g2k2
(35)

and Y PD1−H can be written using figure 5(A) as [15]

Y PD1−H(k, g) = g + 2kg2 + 2k2g2(XPD1−H + Y PD1−H) (36)

and solving equations (35) and (36) to obtain the component
of the partition function perpendicular to the plane of surface
as [15]

Y PD1−H(k, g) = − g(1 + 2gk + g2k2)

−1 + 3g2k2
(37)

therefore, the partition function for this model can be written
as (provided, s1s2 < 1)

GPD1−H(k, ω1, ω2, g) =
g(1+kg)2+s1(2+2ks2+k2(s2−6g)g − 4k3s2g2 + k4s2g3)

(−1 + k2s1s2)(−1 + 3k2g2)
.

(38)

Singularities of the partition give ωc1 = 3
ωc2

.

(ii) Partially directed self-avoiding walk (II) model. Follow-
ing the method used for the PDSAW(I) model we have ob-
tained the component of the partition function perpendicular
to the plane of the surface and for this case, the component of
the partition function perpendicular to the plane of the surface
is [15]

Y PD2−H(k, g) = − g(1 + gk)

−1 + gk + g2k2
(39)

so that the partition function is

GPD2−H(k, ω1, ω2, g)

= g(1 + kg) − s1(1 + ks2)(−1 + kg + k2g2)

(−1 + k2s1s2)(−1 + kg + k2g2)

(s1s2 < 1). (40)

6
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Figure 5. A surface interacting alternating copolymer chain is shown schematically for the PDSAW(I) model on a hexagonal lattice. One end
of the polymer chain is grafted on the fluctuating impenetrable surface at O, SH is the component of the partition function along the surface
and Y H is the component perpendicular to the plane of the surface.

In this case, singularities of the partition function give
ωc1 = 4

(
√

5−1)2ωc2
.

(iii) Fully directed self-avoiding walk model. For this model,
we have the component of the partition function perpendicular
to the plane of the surface is Y FD−H [15], which can be obtained
following the method discussed above for the PDSAW(I)
model:

Y FD−H(k, g) = − g(1 + gk)

−1 + 2g2k2
(41)

Therefore, the partition function is

GFD−H(k, ω1, ω2, g)

= g(1 + kg) − s1(1 + ks2)(−1 + 2k2g2)

(−1 + k2s1s2)(−1 + 2k2g2)
(s1s2 < 1).

(42)

From singularities of the partition function of the copolymer
chain, we write the critical value of the monomer surface
attraction required for A type monomers as ωc1 = 2

ωc2
for the

adsorption of the copolymer chain on the surface.
Variation of ωc1 for various values of ωc2 is shown in

figure 6 for PDSAW(I), PDSAW(II) and FDSAW models for
a two-dimensional hexagonal lattice. When we substitute
ωc1 = ωc2 = ωc, we are able to obtain the critical value of
the monomer surface attraction required for adsorption of a
homopolymer chain on a fluctuating impenetrable surface [15].

Figure 6. In this figure we have shown the values of ωc1 for different
values of ωc2 for adsorption of a semiflexible alternating copolymer
chain on a surface perpendicular to the preferred direction of the
copolymer chain for PDSAW(I), PFDSAW(II) and FDSAW models
on a two-dimensional hexagonal lattice.

It is to be noted that ωc1 required for adsorption of a
copolymer chain on a fluctuating impenetrable surface is
independent of the bending energy of the copolymer chain.
These features are similar to homopolymer adsorption on a
fluctuating impenetrable surface [15].

7
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Figure 7. A surface interacting copolymer chain on a square lattice is shown schematically and the generating function for the perpendicular
component of the partition function for the PDSAW model is also shown in this figure graphically.

2.3. Directed self-avoiding walk model on a square lattice

In the case of a square lattice, the surface is a line, located
at y = 0 (as shown graphically in figure 7) and the A type
monomer of the copolymer chain is grafted to the surface.
In this case too, walks of the copolymer chains are directed
perpendicular to the plane of the surface.

The surface component of the partition function of the
copolymer chain with the first monomer grafted on the surface
of A type can be written using figure 7(B) as

SS(k, ω1, ω2, g) = s1(1 + kY S) + s1s2(1 + kY S)

+ s2
1 s2(1 + kY S) + s2

1 s2
2 (1 + kY S) + · · · (43)

where Y S(k, g) is the component of the partition function
perpendicular to the plane of the surface and the component
along the surface is rewritten as

SS(k, ω1, ω2, g) = s1(1 + s2)(1 + kY S)

1 − s1s2
(s1s2 < 1).

(44)

(i) Partially directed self-avoiding walk model. In this case
we obtain XPD−S by substituting ω1 = ω2 = 1 in equation (44)
and the perpendicular component of the partition function has
been written according to figure 7(A) as [13]

XPD−S(k, g) = g(1 + kY PD−S)

1 − g
(45)

and
Y PD−S(k, g) = g + g(2k XPD−S + Y PD−S). (46)

On solving equations (45) and (46) we obtain the component of
the partition function perpendicular to the plane of the surface
as [13]

Y PD−S(k, g) = g + (2k − 1)g2

1 − 2g + g2 − 2g2k2
(47)

Thus, the partition function for this case is

GPD−S(k, ω1, ω2, g)

= g(1 + (−1 + 2k)g + s1u15)

(−1 + s1s2)(−1 + 2g + (−1 + 2k2)g2)
(s1s2 < 1)

(48)

where

u15 = (−2(−1 + g)(1 + (−1 + k)g) + s2(2 + (−5 + 2k)g

+ (3 − 4k)g2)).

Singularities of the partition function for this case give

ωc1 = (
√

2k+1)2

ωc2
.

(ii) Fully directed self-avoiding walk model. For this case we
write the final form of the component of the partition function
perpendicular to the plane of the surface using the method
described for the PDSAW model on a square lattice as [13]

Y FD−S(k, g) = g

1 − (1 + k)g
(49)

and therefore the partition function is

GFD−S(k, ω1, ω2, g) = g + s1(1 + s2 − g − 2s2g)

(−1 + s1s2)(−1 + g + kg)

(s1s2 < 1). (50)

Singularities of the partition function give ωc1 = (k+1)2

ωc2
.

On substitution of ωc1 = ωc2 = ωc in equations (48)
and (50), we are able to reproduce ωc required for adsorption
of a semiflexible homopolymer chain in two dimensions [13].
Variation of ωc1 with bending energy of the copolymer chain
is shown in figure 8 for PDSAW and FDSAW models on the
square lattice.

2.4. Directed self-avoiding walk model on a two-dimensional
rectangular lattice

We consider a two-dimensional rectangular lattice, which is
derived from a two-dimensional hexagonal lattice (as shown in

8
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Figure 8. We compare the values of ωc1 for different values of βεb for adsorption of a semiflexible alternating copolymer chain on a surface
perpendicular to the preferred direction of the copolymer chain for PDSAW and FDSAW models on a square lattice for three values of
ωc2 = 0.9, 1 and 1.5.

Figure 9. A surface interacting copolymer chain on a two-dimensional rectangular lattice is shown graphically and the generating function for
the perpendicular component of the partition function is also shown in this figure graphically for the PDSAW model on the rectangular lattice.

figure 9). In this case too, the surface is an impenetrable line
located at y = 0 and walks of the copolymer chain are directed
perpendicular to the plane of the surface. Therefore, the
component of the partition function along the surface for the
copolymer chain having the first monomer of A type and that
monomer is grafted on the surface is written using figure 9(B)
as

SR(k, ω1, ω2, g) = s1(1 + s2 + ks2Y R)

+ s2
1 s2(1 + s2 + ks2Y R) + · · · (51)

where Y R(k, g) is the component of the partition function
perpendicular to the plane of the surface, the above equation

can be rewritten as

SR(k, ω1, ω2, g) = s1(1 + s2 + s2kY R)

1 − s1s2
(s1s2 < 1).

(52)

(i) Partially directed self-avoiding walk model. For the
PDSAW model on the rectangular lattice, the generating
function for the component of the partition function
perpendicular to the plane of the surface is written using
figure 9(A) as [16]

Y PD−R(k, g) = g + 2g2k + 2g2k(XPD−R + kY PD−R) (53)

9
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Figure 10. This figure compares the values of ωc1 for different values of βεb for adsorption of a semiflexible alternating copolymer chain on a
surface perpendicular to the preferred direction of the walks of a copolymer chain for PDSAW and FDSAW models on a two-dimensional
rectangular lattice for the values of ωc2 = 0.9, 1 and 1.5.

where XPD−R(k, g) = SR(k, ω1 = ω2 = 1, g). In other words
we can write XPD−R(k, g) by substituting ω1 = ω2 = 1 in
equation (52):

XPD−R(k, g) = g(1 + g + gkY PD−R)

1 − g2
. (54)

On solving equations (53) and (54) we get

Y PD−R(k, g) = − g + 2g2k − g3 + 2g3k

−1 + g2 + 2g2k2
(55)

Therefore, the partition function is

GPD−R(k, ω1, ω2, g)

= g(1 + g)(1 + (−1 + 2k)g + s1(u16 + s2u17))

(−1 + s1s2)(−1 + (1 + 2k2)g2)

(s1s2 < 1) (56)

where
u16 = −2(−1 + (1 + 2k2)g2)

and

u17 = 2 + (−1 + 2k)g − 2(1 + k)g2 + (1 − 2k)2g3.

From singularities of the partition function we have ωc1 =
(2k2+1)2

ωc2
.

(ii) Fully directed self-avoiding walk model. For the fully
directed walk model on the rectangular lattice, we have
Y FD−R(k, g) as [16] that we have obtained using the method
discussed above:

Y FD−R(k, g) = − g + g2k − g3 + g3k

−1 + g2 + g2k2
(57)

and the partition function:

GFD−R(k, ω1, ω2, g)

= g(1 + g)(1 + (−1 + k)g + s1(u18 + s2u19))

(−1 + s1s2)(−1 + (1 + k2)g2)

(s1s2 < 1) (58)

where
u18 = 1 − (1 + k2)g2

and

u19 = 1 + (−1 + k)g − (1 + k)g2 + (−1 + k)2g3.

In this case, singularities of the partition function give
ωc1 = (k2+1)2

ωc2
. Variation of ωc1 with bending energy of the

copolymer chain for a few values of ωc2 is shown in figure 10.
For the case of directed walk models on the rectangular lattice,
when we substitute ωc1 = ωc2 = ωc in the partition function,
we are able to reproduce the critical value of the monomer
surface attraction required for the adsorption of a semiflexible
homopolymer chain on the rectangular lattice [16].

3. Result and discussion

The lattice model of a directed self-avoiding walk has been
solved using the generating function method for adsorption
of a semiflexible alternating copolymer chain on a surface
perpendicular to the preferred direction of the walks of
the copolymer chain. We have used a three-dimensional
(cubic) lattice and two-dimensional (hexagonal, square and
rectangular) lattice to model the copolymer chain and to
investigate adsorption properties of the copolymer chain
on an impenetrable flat surface (two-dimensional and one-
dimensional) and impenetrable fluctuating surface (one-
dimensional). The copolymer chain is made of two types of
monomers (A and B) and the A type monomer has an attractive
interaction with the surface while the B type monomer can
have attractive, repulsive or no interaction with the surface.
Our study showed that adsorption on the flat surface of a
stiffer copolymer chain takes place at a smaller value of the
monomer surface attraction when compared to that of a flexible
copolymer chain.

We have compared the values of ωc1 (as shown in figure 11
for ωc2 = 1) required for adsorption of an alternating
copolymer chain for square, rectangular and cubic lattice cases
where the surface is flat and impenetrable. We have found in
all these lattice case that a stiffer chain adsorption occurs at a

10
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Figure 11. This figure compares the values of ωc1 for different
values of βεb for adsorption of a semiflexible alternating copolymer
chain on a surface perpendicular to the preferred direction of the
walks of a copolymer chain for PDSAW and FDSAW models on a
cubic, square and rectangular lattice for the values of ωc2 = 1.

smaller value of monomer surface attraction than the flexible
chain. However, in the case of a fluctuating impenetrable
surface, the critical value of monomer surface attraction
required for the copolymer chain adsorption is independent of
the bending energy of the chain. These features of adsorption
on an impenetrable flat and fluctuating surface are similar to
the semiflexible homopolymer adsorption [13–16].
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